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OF THE KINETIC EQUATION
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Abstract

We consider the problem of deriving a kinetic

equation for the cosmic ray distribution function in a

random magnetic field. A model is adopted which is

mathematically simple but which contains the essential

physics. We investigate the perturbation expansion upon

which the quasilinear treatment employed by previous

authors is based. As pointed out by Klimas and Sandri,

the existence of resonant particles causes the breakdown

of the adiabatic approximation frequently used in this

theory. We find further that resonant particles cause

a general secular growth of higher order terms in the

expansion which invalidates the entire perturbative approach.
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COSMIC RAYS IN A RANDOM MAGNETIC FIELD: BREAKDOWN OF

THE QUASILINEAR DERIVATION OF THE KINETIC EQUATION

I. Introduction.

During the past few years several authors have considered

the problem of how best to describe the evolution of a

distribution of cosmic ray particles in a random.electromagnetic

field. Certain of these investigations have employed a

quasilinear analysis (Vedenov, Velikhov and Sagdeev 1961,

1962; Drummond and Pines 1962) of the Vlasov equation to derive

a kinetic equation of the Fokker-Planck form (Hall and Sturrock

1967; Hasselmann and Wibberenz 1968; Kulsrud and Pearce

1969' Jokipii 1971, 1972). This approach treats the effect of

the random field as a perturbation of the orbits of particles

moving in an average background field. The distribution

function is expressed as a power series in a small parameter

which characterizes the strength of the random field.

Quasilinear theory assumes that terms in this series of higher

than second order are negligible. In order to obtain a

Fokker-Planck equation it is further assumed that there are

two Lime scales: the correlation time of the fluctuating

field as seen by a particle moving along its unperturbed

trajectory, and the much longer relaxation time of the

distribution function.

Recently, these treatments have been criticized by

Klimas and SAndri (1971) on the grounds that there are cosmic

ray particles for which the correlation time can be arbitrarily
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long. In their analysis, this fact makes the time development

of the distribution function non-Markovian, thereby precluding

its description by a Fokker-Planck kinetic equation. They

conclude, therefore, that the quasilinear kinetic equation

must be dealt with in its full integro-differential form.

It is well known in plasma physics that resonance

behavior can lead to terms in the kinetic equation that grow

secularly with time, thus causing the quasilinear scheme to

break down (Davidson 1972). Specifically, the breakdown is

due to particles whose motion is not properly described in

the approximation scheme; over the correlation time of the

fluctuations, orbits of such particles deviate significantly

from the trajectories in the average field. It was our

suspicion that quasilinear theory would fail for just this

reason in the case considered by Klimas and Sandri (1971).

To test this hypothesis we have investigated a model

equation designed to include the relevant features of the

Klimas and Sandri model, without all of the latter's mathe-

matical complexity. We were specifically interested in comparing

the behavior of higher order terms in the perturbation series

with that of the quasilinear term. We found that the quasilinear

term in our model has the same long time behavior as that of

Klimas and Sandri, and that the non-vanishing term of next

higher order, while important for even fairly short times,

strongly dominates the quasilinear term for long times.
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We are thus led to the conclusion that in the case of

the cosmic ray problem, the behavior of resonant particles

cannot be adequately handled by quasilinear theory, or indeed

by any perturbation technique which assumes that the motion of

particles deviates only slightly from the trajectories in

the average field.

In §II we describe the details of our physical model,

emphasizing its essential similarity to that of Klimas and

Sandri. The continuity equation in the appropriate phase

space is used in §III to derive a kinetic equation for the

distribution function correct to fourth order in the strength

of the random field, and in §IV we compare the fourth-order

term with the second-order (quasilinear) term. An example

with parameter values characteristic of the interplanetary

region is discussed to show how quickly the higher order

term dominates.

II. The Physical Model

We consider a two-dimensional distribution of monoenergetic

particles free to move in the y-z plane. A static random

magnetic field, 6B, is oriented normal to this plane in the

x-direction. The field is assumed to be a homogeneous

stochastic function of z only, with Gaussian statistics and

vanishing mean. Since any x-component of velocity as well

as the magnitude of the velocity in the y-z plane are independent

constants of the motion, extension of the model to three

dimensional motion and a distribution of kinetic energies is

trivial. Weak gradients in particle density in the z-direction

3



are allowed, but the density is assumed to be uniform in the

y-direction. The single-particle distribution function, f, then

can be expressed as a function ttime, t; position, z; and

the angle, e, between the velocity vector, v, and the z-axis.

The miagnitude of v enters the analysis only as a parameter.

We emphasize that the model, while obviously idealized, is

nonetheless physically realizable.

The essential feature of the Klimas and Sandri model is

the existence of particles whose unperturbed orbits either

remain within or periodically re-enter for arbitrarily long

times a region throughout which values of the field strength

are correlated. Such a class of particles, namely those for

which 0 =-±/2, is present also in our model. We refer to them

as resonant because the effect of the perturbing field adds

coherently for arbitrarily long times.

Further similarities between the two models will be

pointed out during the derivation of the kinetic equation for f

in §III.

III. The Kinetic Equation

The continuity equation for f in the (z,O) phase space is

t + a dz (dtf) + e (de f )
= 0 (1)

With dz/dt = v cos 9 and

dO -) = 6((z))., (2)dt ymc

where q is the particle charge and y is the usual relativistic

time dilation factor, Equation (1) can be written

4



a f v Ds 3f 
.t{ + Vos + &,-w D 0 (3)

We next write Equation (3) in terms of the dimensionless

variables T = vt/Zc, = z/z and 6% = Z6W/v, z being theC C C C

correlation length of the fluctuating field:

IDf+os + cose f (4)

Consider a statistical ensemble of systems, and denote

the ensemble average of a quantity A by <A>. The fluctuating

part of A is 6A = A - <A>; clearly 6<A> = 0. With this

convention Equation (4) can be written

9<f: + Cosa D<f> + s3 <f> (5)

+af + cose Daf + 6% (5f

+ a3T + cos8 ~d;+d d 

The ensemble average of Equation (5) is

9<f> + c <f> 36f
aT cosa a> - <6 96f > (6)

Subtracting Equation (6) from Equation (5) gives

36f D6f D<f> 6af--- + cos a_ - < -s, =+< >8 (7)

At this point a quasilinear analysis proceeds by neglecting

the last two terms on the right side of Equation (7). This

approximation assumes that 6f is proportional to 6% and that

6% is small compared to unity. We note that 6% = Zc/rg, where

r is the gyro-radius of a particle in the fluctuating field.

Thus, the fundamental assumption of the quasilinear analysis, as

Klimas and Sandri point out, is that z << r . Corrections to
c g
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the quasilinear treatment are obtained by iterating Equation

(7) with respect to the 0(642) terms. To O(6n) , 6f is thus

written as

6f = 6f(1) +6f(2) + + f ( n ) (8)

where f (n) is the n-th iterate and is thus of n-th order

in 64. When the series, Equation (8), is substituted into

Equation(6) the kinetic equation for <f>, correct through

O(6'
n + l

) ,i s obtained (Kaufman, 1968).

We carry out the iterative solution of Equation (7) via

the method of characteristics. The characteristic unperturbed

trajectory is defined by

C*(T') = *(T) + cos0 (T-T) , *( T') = e ,T'<T (9)

with C*(T) E-. The first three iterates of Equation (7),

neglecting initial value terms, are

( i ) T 3<f> (1)
6f 1 (,,T)- - f dT l 6(1) D (10)

0

6f() (r,,T)= fT dT 64(1) - fT d26<f>(2)
' e 90 2 0

< 6 3 fT dT<f>2)2)

T
fdz<6 ( 1 )d |ldT 6~(2)> <f (2)

0 ~~~0 2

6f3) C~(,eT) =- f dT (f) lidT 6 4 (2 )- T 2 D<f>(3)
0 1 0 0 2 dT 6(a3) (3

o 1 0 2 M 0 3 90

+ rT dT64(l) 1 T <612) a 2dT ¾3<f>(3)
~~ T 1~~ ~

T 1 6( 1) f ldT6(2) ~- dT3 6
4 (3 )> a0

(12)
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In obtaining Equation (12), the fact that <64> = 0 was

used. On the right side of Equations (10) - (12) an argument,

n, means that the function is to be evaluated at the phase

space point [C*(Tn), e*(Tn)], at timeTn, where [C*, 0*] is

obtained from Equation (9) with T =T n and T = Tn 1. Also,n nl

T ET.
O

Substitution of Equations (8) - (12) in Equation (6)

gives the kinetic equation for <f> correct to fourth order

in 64. This equation can be considerably simplified by

exploiting the statistical properties we have assumed for 64,

in particular

a) <65> = 0 ,

b) <b(C)6)(VC)6W(? ;> 0 ,

c) <6: () 6 () 64 (') 64 ( )> = <64 () 64 (')><6 () 6 (6)>

+ <() < (()> + <6a)(C)(C )> <6 (4)(C')>.

Properties (b) and (c) are true for any homogeneous Gaussian

process for which (a) is true. Properties (a) and (b) imply

that 6f(2) and the third term of 6f(3) [Equation (12)] do

not contribute to the right side of Equation (6). Use of (c)

allows Equation (6) finally to be put in the form

a<f> +cos8 af> f dT1<6 6¢(1)> T<f>(l)2T 2C -28 f T<6 6~1) <f> (1)
0

~~~~~~ 2 Tdi<6(3><f> (3)+ fa dr < 6 (l) a 1 dI26(2) ad e.> 3
0 0 d

T 2 d <f> (3)

+ 0 <6cb64) (2>' 0. f d¶ 364) (3)> ae (13)
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Our contention is that in the cosmic ray problem, effects

of 6f(3) [the second and third terms on the right side of

Equation (13)'] dominate those of the quasilinear term, 6f( ) ,

and the expansion procedure using the characteristic trajectories,

Equation (9), becomes invalid over times of interest.

To facilitate evaluation of the integrals appearing in

Equation (13) we assume that the two-point correlation

function has the simple form

<6~(~)6(~)> <6p 2 > S (1-1'[-l) (14)

where S is the unit step function

1a, a< bs(a-b) = 0 a> b (15)

(Recall that all lengths have been scaled by the correlation

length, Zc) Further following Klimas and Sandri (1971), we

expand <f> in a series of Legendre polynomials

<f> = <f> 0 + <f> cose (16)
1

<f> is the density averaged over 6, <f>l measures the

anisotropy and therefore is related to-the particle flux,

and terms of higher order than P1 have been neglected. Finally,

Equations (14) - (16) are substituted in Equation (13) and

moments of the resulting equation taken with respect to P0 = 1

and P1 = cose to obtain coupled equations for <f>0 and <f>l.

In evaluating the right side of Equation (13) it is

assumed that spatial gradients in <f> are negligible.
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The result is

<f> + 1 <f>0 0 (17)
2

1 3<f>l + 1 2<f>d
2 aT 2 ac

T

=-_ <6p2 >f dT [I (T -<62>I4(T) ] <f> (T-T) (18)
2 ' 

0

where
2-l 1/2 1 S1T(19)

I2(T):= S(T-1 ) + [ (T-) i()]S

~~~~~~~~~~~~~~~(20

14 (T)=k~T) + k1 (T) S(1-T) + k 2 (T) S(2-T) (20)

and

k0(T) = 1 T2
0 ~2T

1(T1)21 _, 92I'(9)

2

i 2 T2 51) ( T2-1 ) -(~T -6 ) co s } 

(-)
T T 2 1

+ l0 T Qn [T+ (T2 -1)] ]},

T2 1 +7 2 _12
k ( T -2 T 7 T2 ) (4-1) +(2T -6)COS (-)

TO Tn [T
- 10T kn[2 + (4 - 1) ] },(21)

The degree to which our simple model is successful in

simulating the more complicated Klimas and Sandri model is

apparent from Equations (18) and (19). As mentioned earlier,

our expansion parameter <6p2> = (Zc/rg) 2 is identical to theirs.

Furthermore, the second-order contribution to our kernel has

the long-time behavior 12 (T)%T 1, which is exactly the long-

time form of the quasilinear kernel obtained by Klimas and

Sandri. ;Jtt-st asin their model, the long range of I2 is

9



caused by resonant particles, for which the approximation

of unperturbed orbits breaks down.

IV. Failure of Quasilinear Theory

For large values of T the second and fourth-order

contributions to the integrand on the right side of Equation

{18) have, respectively, the forms

I2(T)-- I (T) = Tr T , T>>,
2~ ~~ ~~~ 2 Ts T>>

<62> I4 (T)+ <6p 2 > 14 (T) = 12> T T>.

I4 and I 4are plotted as functions of the dimensionless14 an 4

time variable, T, in Figure 1. From the graph it is clear

that 14 (T) provides a lower bound for 14 (T) for all values

of T. It is simply verified that I2(T) similarly provides
2

an upper bound for I2 (T). Therefore, the ratio of the fourth

and second-order contributions is

I4T) I4 (T) T
1I (T) <6~2> > I-~T <6~2> = 24 <6¢2>~~~~~~~~4 46

This ratio becomes appreciable - and the quasilinear approximation

consequently begins to break down - on the time scale T 4(24/<6S2>)1/4
4

which is comparable to or shorter than what would be the natural

time scale of Equation (18) if 14 were neglected,T=<6c2>-
1. There

is every reason to believe that higher order terms in the

perturbation series will become important for times < T 4 , so that

quasilinear theory applies, if at all, only for rather short

times.
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T depends, of course, on the characteristics of the

random field and the energy of the particles. For protons

in the interplanetary magnetic field, with zc = 2 x 1011 cm
c

and <6B2 > 1/ 2 - 2.5 x 10- gauss (Jokipii 1971),

<6~2> ~ . (22)(T+i)'-l (22)

where T is the particle kinetic energy in GeV. Since <6S 2>

must be small compared to unity for the perturbation series

to be sensible, Equation (22) implies that the perturbation

solution can be valid only in the energy range T > 1 GeV. For

T = 10 GeV, one finds that T4 = 6, corresponding to a time

t4= T4 zc/v = 40 sec. This is an order of magnitude shorter

than the time scale <6c2 >-1 Zc/v = 350 sec, illustrating

our contention that the validity of the quasilinear approximation

is restricted to time scales much shorter than those of interest.
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Figure Caption

Fig. 1. Time dependence of fourth-order contribution

to the right side of equation (18), both the exact

expression, I4, and the approximation for long

times, I4 = T 3 /12Tr .
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